您當前的位置:首頁 > 體育

2022鐵嶺六校圓錐大題快速解法

作者:由 吳老師 發表于 體育時間:2022-03-14

2022鐵嶺六校圓錐大題快速解法

解:此題關鍵在第一問,命題者為了降低難度,直接告訴了極線方程,依葫蘆畫瓢即可;

(1)設

M(m,n)

\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)

,則

AB:mx+ny=4,

\mathrm{AB}: \frac{\mathrm{x}_{0} \mathrm{x}}{2}+\mathrm{y}_{0} \mathrm{y}=1

\mathrm{x}_{0}=\frac{\mathrm{m}}{2}, \mathrm{y}_{0}=\frac{\mathrm{n}}{4}

M

軌跡方程為

\frac{x^{2}}{8}+\frac{y^{2}}{16}=1;

(2)此問用三角形面積座標公式可以一步到位解決。

知識準備:若

O,A,B

為平面內不共線三點,

O

為座標原點,

\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)

 \overrightarrow{\mathrm{OA}}

 \overrightarrow{\mathrm{OB}}

夾角為

 \theta

,則

\begin{aligned} \mathrm{S}_{\mathrm{OAB}} &=\frac{1}{2}|\overrightarrow{\mathrm{OA}}||\overrightarrow{\mathrm{OB}}| \cdot \sin \theta=\frac{1}{2} \sqrt{|\overrightarrow{\mathrm{OA}}|^{2}|\overrightarrow{\mathrm{OB}}|^{2} \sin ^{2} \theta}=\frac{1}{2} \sqrt{|\overrightarrow{\mathrm{OA}}|^{2}|\overrightarrow{\mathrm{OB}}|^{2}\left(1-\cos ^{2} \theta\right)} \\ &=\frac{1}{2} \sqrt{|\overrightarrow{\mathrm{OA}}|^{2}|\overrightarrow{\mathrm{OB}}|^{2}-(\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}})^{2}}=\frac{1}{2} \sqrt{\left(\mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}\right)\left(\mathrm{x}_{2}{ }^{2}+\mathrm{y}_{2}{ }^{2}\right)-\left(\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}\right)^{2}} \\ &=\frac{1}{2} \sqrt{\left(\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}\right)^{2}}=\frac{1}{2}\left|\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}\right| \end{aligned}

正式解答:

\mathrm{S}_{\triangle \mathrm{OPM}}=\frac{1}{2}\left|\mathrm{my}_{0}-\mathrm{nx}_{0}\right|=\left|\mathrm{x}_{0} \mathrm{y}_{0}\right|=\sqrt{\mathrm{x}_{0}^{2} \mathrm{y}_{0}^{2}}=\sqrt{2} \sqrt{\frac{\mathrm{x}_{0}^{2}}{2} \cdot \mathrm{y}_{0}^{2}}

,由均值 不等式可得

\frac{x_{0}^{2}}{2} \cdot y_{0}^{2} \leq\left(\frac{\frac{x_{0}^{2}}{2}+y_{0}^{2}}{2}\right)^{2}=\frac{1}{4}

,當且僅當

\frac{3 x_{0}^{2}}{2}=y_{0}^{2}=\frac{1}{2}

取等,

\left(S_{\Delta O P M}\right)_{\max }=\frac{\sqrt{2}}{2};