您當前的位置:首頁 > 娛樂

(雙曲)三角函式拓展——從泰勒展開進行拓展

作者:由 Theta-exi 發表于 娛樂時間:2020-08-14

第一次在知乎寫文章。

高一的時候就喜歡把一些數學玩意發到qq空間裡,這次來到知乎看到個專欄就想寫個文章投一投了(

初(高?)中時很喜歡收集一些函式的泰勒展開,然後逐漸對這些函式有了些瞭解。後面發現三角函式和雙曲三角函式的聯絡是緊密的,於是就從泰勒展開開始探究一些類似的函式。

\sin x =\sum_{n=0}^{+\infty}\frac{\left( -1 \right)^{n}x^{2n+1}}{\left( 2n+1 \right)!},\cos x =\sum_{n=0}^{+\infty}\frac{\left( -1 \right)^{n}x^{2n}}{\left( 2n \right)!},\sinh x =\sum_{n=0}^{+\infty}\frac{x^{2n+1}}{\left( 2n+1 \right)!},\cosh x =\sum_{n=0}^{+\infty}\frac{x^{2n}}{\left( 2n \right)!}

這些是三角(雙曲)函式的泰勒展開,我們可以類似的構造出下面幾個函式

f_{0}\left( x \right)=\sum_{n=0}^{+\infty}\frac{x^{3n}}{\left( 3n \right)!},f_{1}\left( x \right)=\sum_{n=0}^{+\infty}\frac{x^{3n+1}}{\left( 3n+1 \right)!},f_{2}\left( x \right)=\sum_{n=0}^{+\infty}\frac{x^{3n+2}}{\left( 3n+2 \right)!}

顯然並且和雙曲三角函式類似,有

f_{0}\left( x \right)+f_{1}\left( x \right)+f_{2}\left( x \right)=\mathrm{e}^{x},f_{0}

類似

-1=\mathrm{e}^{\pi\mathrm{i}}

\mathrm{i}=\mathrm{e}^{\frac{\pi\mathrm{i}}{2}}

,我們把兩個數作為這三個新函式的“虛數單位”

r_{0}=\mathrm{e}^{\frac{2\pi\mathrm{i}}{3}},r_{1}=\mathrm{e}^{-\frac{2\pi\mathrm{i}}{3}}

於是有

r_{0}^{3}=r_{1}^{3}=1\cdot r_{0}\cdot r_{1}=1,1+r_{0}+r_{1}=0,r_{0}^{2}=r_{1},r_{1}^{2}=r_{0}

顯然

\begin{align}f_{0}\left( r_{0}x \right)=f_{0}\left( x \right),f_{1}\left( r_{0}x \right)=r_{0}f_{1}\left( x \right),f_{2}\left( r_{0}x \right)=r_{1}f_{2}\left( x \right)\cr f_{0}\left( r_{1}x \right)=f_{0}\left( x \right),f_{1}\left( r_{1}x \right)=r_{1}f_{1}\left( x \right),f_{2}\left( r_{1}x \right)=r_{0}f_{2}\left( x \right)\end{align}

\mathrm{e}^{r_{0}x}=f_{0}\left( x \right)+r_{0}f_{1}\left( x \right)+r_{1}f_{2}\left( x \right),\mathrm{e}^{r_{1}x}=f_{0}\left( x \right)+r_{1}f_{1}\left( x \right)+r_{0}f_{2}\left( x \right)

由此得出與三角函式類似的結果

f_{0}\left( x \right)=\frac{\mathrm{e}^{x}+\mathrm{e}^{r_{0}x}+\mathrm{e}^{r_{1}x}}{3},f_{1}\left( x \right)=\frac{\mathrm{e}^{x}+r_{1}\mathrm{e}^{r_{0}x}+r_{0}\mathrm{e}^{r_{1}x}}{3},f_{2}\left( x \right)=\frac{\mathrm{e}^{x}+r_{0}\mathrm{e}^{r_{0}x}+r_{1}\mathrm{e}^{r_{1}x}}{3}

同時可以得出

\begin{align}f_{0}\left( x \right)&=\frac{1}{3}\mathrm{e}^{x}+\frac{2}{3}\mathrm{e}^{-\frac{1}{2}x}\cos\left( \frac{\sqrt{3}}{2}x \right)\cr f_{1}\left( x \right)&=\frac{1}{3}\mathrm{e}^{x}+\frac{2}{3}\mathrm{e}^{-\frac{1}{2}x}\cos\left( \frac{\sqrt{3}}{2}x-\frac{2\pi}{3} \right)\cr f_{2}\left( x \right)&=\frac{1}{3}\mathrm{e}^{x}+\frac{2}{3}\mathrm{e}^{-\frac{1}{2}x}\cos\left( \frac{\sqrt{3}}{2}x+\frac{2\pi}{3} \right)\end{align}

於是我們有

\begin{align}1&=\mathrm{e}^{0\cdot x}=\mathrm{e}^{\left( 1+r_{0}+r_{1} \right)\cdot x}=\mathrm{e}^{x}\mathrm{e}^{r_{0}x}\mathrm{e}^{r_{1}x}\cr &=\left( f_{0}\left( x \right)+f_{1}\left( x \right)+f_{2}\left( x \right) \right)\left( f_{0}\left( x \right)+r_{0}f_{1}\left( x \right)+r_{1}f_{2}\left( x \right) \right)\left( f_{0}\left( x \right)+r_{1}f_{1}\left( x \right)+r_{0}f_{2}\left( x \right) \right)\cr &=f_{0}^{3}\left( x \right)+f_{1}^{3}\left( x \right)+f_{2}^{3}\left( x \right)-3f_{0}\left( x \right)f_{1}\left( x \right)f_{2}\left( x \right)\end{align}

我們知道三角函式和雙曲三角函式都有公式,三角函式的和角公式可以這樣推出

\begin{align}\cos\left( \alpha+\beta \right)+\mathrm{i}\sin\left( \alpha+\beta \right)&=\mathrm{e}^{\mathrm{i}\left( \alpha+\beta \right)}=\mathrm{e}^{\mathrm{i}\alpha}\mathrm{e}^{\mathrm{i}\beta}\cr &=\left( \cos\alpha+\mathrm{i}\sin\alpha \right)\left( \cos\beta+\mathrm{i}\sin\beta \right)\cr &=\cos\alpha\cos\beta-\sin\alpha\sin\beta+\mathrm{i}\left( \sin\alpha\cos\beta+\cos\alpha\sin\beta \right)\end{align}

\begin{align}\cos\left( \alpha+\beta \right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\cr \sin\left( \alpha+\beta \right)=\sin\alpha\cos\beta+\cos\alpha\sin\beta\end{align}

我們嘗試以類似的方法計算新函式的和角公式(為了方便簡潔把三個結果在最後記為

a,b,c,

並且分別記

f_{0}\left( \alpha+\beta \right),f_{1}\left( \alpha+\beta \right),f_{2}\left( \alpha+\beta \right)

f_{0},f_{1},f_{2}

\begin{align}f_{0}+r_{0}f_{1}+r_{1}f_{2}&=\mathrm{e}^{r_{0}\left( \alpha+\beta \right)}=\mathrm{e}^{r_{0}\alpha}\mathrm{e}^{r_{0}\beta}\cr &=\left( f_{0}\left( \alpha \right)+r_{0}f_{1}\left( \alpha \right)+r_{1}f_{2}\left( \alpha \right) \right)\left( f_{0}\left( \beta \right)+r_{0}f_{1}\left( \beta \right)+r_{1}f_{2}\left( \beta \right) \right)\cr &=f_{0}\left( \alpha \right)f_{0}\left( \beta \right)+f_{2}\left( \alpha \right)f_{1}\left( \beta \right)+f_{1}\left( \alpha \right)f_{2}\left( \beta \right)\cr &+r_{0}\left( f_{2}\left( \alpha \right)f_{2}\left( \beta \right)+f_{0}\left( \alpha \right)f_{1}\left( \beta \right)+f_{1}\left( \alpha \right)f_{0}\left( \beta \right) \right)\cr &+r_{1}\left( f_{1}\left( \alpha \right)f_{1}\left( \beta \right)+f_{2}\left( \alpha \right)f_{0}\left( \beta \right)+f_{0}\left( \alpha \right)f_{2}\left( \beta \right) \right)\cr &=a+r_{0}b+r_{1}c\end{align}

那麼是不是有

f_{0}=a,f_{1}=b,f_{2}=c

了呢?當然不是,

r_{0}

r_{1}

說白了就是一個複數,即

r_{0}=-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i},r_{1}=-\frac{1}{2}-\frac{\sqrt{3}}{2}\mathrm{i}

就是說我們只有

\begin{cases}f_{0}-\frac{1}{2}\left( f_{1}+f_{2} \right)&=a-\frac{1}{2}\left( b+c \right)\cr \frac{\sqrt{3}}{2}\left( f_{1}-f_{2} \right)&=\frac{\sqrt{3}}{2}\left( b-c \right)\end{cases}

這樣是推不出

f_{0}=a,f_{1}=b,f_{2}=c

的。

但事實上,我們有

a+b+c=\left(f_0(\alpha )+f_1(\alpha )+f_2(\alpha )\right) \left(f_0(\beta )+f_1(\beta )+f_2(\beta )\right)=\mathrm{e}^{\alpha } \mathrm{e}^{\beta }=\mathrm{e}^{\alpha +\beta }

請讀者自行驗證(

而且由於

f_{0}+f_{1}+f_{2}=\mathrm{e}^{\alpha+\beta}

,我們就有

f_{0}+f_{1}+f_{2}=a+b+c

這樣就構成了一個三元一次方程組

\begin{cases}f_{0}-\frac{1}{2}\left( f_{1}+f_{2} \right)&=a-\frac{1}{2}\left( b+c \right)\cr \frac{\sqrt{3}}{2}\left( f_{1}-f_{2} \right)&=\frac{\sqrt{3}}{2}\left( b-c \right)\cr f_{0}+f_{1}+f_{2}&=a+b+c\end{cases}

解之就有

f_{0}=a,f_{1}=b,f_{2}=c

了。即

\begin{align}f_{0}\left( \alpha+\beta \right)&=f_{0}\left( \alpha \right)f_{0}\left( \beta \right)+f_{2}\left( \alpha \right)f_{1}\left( \beta \right)+f_{1}\left( \alpha \right)f_{2}\left( \beta \right)\cr f_{1}\left( \alpha+\beta \right)&=f_{2}\left( \alpha \right)f_{2}\left( \beta \right)+f_{0}\left( \alpha \right)f_{1}\left( \beta \right)+f_{1}\left( \alpha \right)f_{0}\left( \beta \right)\cr f_{2}\left( \alpha+\beta \right)&=f_{1}\left( \alpha \right)f_{1}\left( \beta \right)+f_{2}\left( \alpha \right)f_{0}\left( \beta \right)+f_{0}\left( \alpha \right)f_{2}\left( \beta \right)\end{align}

這種方法也可以用來求n倍角公式,只是需要一個小證明和更多的組合數學罷了(

這樣我們就可以得到二倍角公式

\begin{align}f_0(2 x)&=f_0^2(x)+2 f_1(x) f_2(x)\cr f_1(2 x)&=f_2^2(x)+2 f_0(x) f_1(x)\cr f_2(2 x)&=f_1^2(x)+2 f_2(x) f_0(x)\end{align}

三倍角公式

\begin{align}f_0(3 x)&=f_0^3(x)+f_1^3(x)+f_2^3(x)+6 f_0(x) f_1(x) f_2(x)\cr f_1(3 x)&=3 \left(f_0(x) f_2^2(x)+f_1(x) f_0^2(x)+f_2(x) f_1^2(x)\right)\cr f_2(3 x)&=3 \left(f_0(x) f_1^2(x)+f_1(x) f_2^2(x)+f_2(x) f_0^2(x)\right)\end{align}

利用等式

f_{0}^{3}\left( x \right)+f_{1}^{3}\left( x \right)+f_{2}^{3}\left( x \right)-3f_{0}\left( x \right)f_{1}\left( x \right)f_{2}\left( x \right)=1

得到

f_0(3 x)=1+9 f_0(x) f_1(x) f_2(x)

其它公式要得到似乎是很困難的了,要得到半形公式只需要解上面列出的三條等式構成的方程組,但是結果卻非常複雜……(或許需要一些技巧吧)

再進一步拓展,我們可以構造出這樣的函式

f_{k}\left( x \right)=\sum_{n=0}^{+\infty}{\frac{x^{Nn+k}}{\left( Nn+k \right)!}},k=0,1,…,N-1

我們有

\sum_{n=0}^{N-1}{f_{n}\left( x \right)}=\mathrm{e}^{x},f_{0}^\left( N \right)\left( x \right)=f_{N-1}^\left( N-1 \right)\left( x \right)=f_{N-2}^\left( N-2 \right)\left( x \right)=…=f_{1}

(以下完全照搬上文思路)利用N次單位根來進行討論

r_{k}=\mathrm{e}^{\frac{2k\pi\mathrm{i}}{N}}

f_{k}\left( r_{i}x \right)=r_{ki}f_{k}\left( x \right)

\mathrm{e}^{r_{k}x}=\sum_{n=0}^{N-1}{f_{n}\left( r_{k}x \right)}=\sum_{n=0}^{N-1}r_{nk}{f_{n}\left( x \right)}

(這裡相對上文補充了點內容)由於

\sum_{n=0}^{N-1}{\mathrm{e}^{r_{n}x}}=\sum_{i=0}^{N-1}{f_{i}\left( x \right)\sum_{n=0}^{N-1}{r_{in}}}

當且僅當

i=0

\sum_{n=0}^{N-1}{r_{in}}=\sum_{n=0}^{N-1}{r_{0}}=N

否則

\sum_{n=0}^{N-1}{r_{in}}=0

這是因為當

0<i<N

時有

0<\frac{2 i \pi}{N}<2 \pi  \Rightarrow\mathrm{e}^{\frac{2 i \pi  \mathrm{i}}{N}}\ne1

,而

\mathrm{e}^{2 i \pi  \mathrm{i}}-1=0

所以

\sum_{n=0}^{N-1}{r_{in}}=\frac{\mathrm{e}^{2 i \pi  \mathrm{i}}-1}{\mathrm{e}^{\frac{2 i \pi  \mathrm{i}}{N}}-1}=0

\sum_{n=0}^{N-1}{\mathrm{e}^{r_{n}x}}=Nf_{0}\left( x \right)

於是

f_{k}\left( x \right)=f_{0}^{\left( N-k \right)}\left( x \right)=\frac{1}{N}\sum_{n=0}^{N-1}{r_{-kn}\mathrm{e}^{r_{n}x}}

r_{n}

的複數形式

r_{n}=\cos\frac{2n\pi}{N}+\mathrm{i}\sin\frac{2n\pi}{N}

顯然有

\operatorname{Im} f_{k}\left( x \right)=0

這樣就有

f_{k}\left( x \right)

的實表示式

f_{k}\left( x \right)=\frac{1}{N}\sum_{n=0}^{N-1}{\mathrm{e}^{x\cos\frac{2n\pi}{N}}\cos\left( x\sin\frac{2n\pi}{N}-\frac{2kn\pi}{N} \right)}

和角公式可以以上文的思路推匯出來,這裡就省略不寫了。

標簽: 三角函式  公式  函式  雙曲  我們