您當前的位置:首頁 > 攝影

變分法(3)——不同型別的泛函變分

作者:由 Jaysny 發表于 攝影時間:2021-06-08

簡介

泛函

泛函

是以

函式為自變數

函式

F=\{y(x)\}

為定義在

\mathbb R

上的某一

函式類集合

,若將

F

中的每個函式

y(x)

對映

變數

J

,則

J

稱為

F

泛函

,記作

J[y(x)]

F

稱為

J

定義域,

y(x)

稱為

J

宗量

J

的值不單取決於

x

y(x)

,而是取決於

F

y(x)

x

的關係

一元函式

泛函

稱為

曲線函式,二元函式

泛函

稱為

曲面函式,三元函式

泛函

稱為

曲體函式

?

變分法(3)——不同型別的泛函變分

極值曲線

最簡泛函變分

泛函:

J[y(x)]=\int_{x_0}^{x_1}{F(x;y,\dot y)dx}\\

邊界條件:

y(x_0)=y_0,\ y(x_1)=y_1\\

泛函取極值的條件為

\delta J=0\\

根據

基本變分原理

可得

\begin{align} \delta J=\int_{x_0}^{x_1}{\delta F(x;y,\dot y)dx}= \int_{x_0}^{x_1}{(\frac{\partial F}{\partial y}\delta y+\frac{\partial F}{\partial \dot y}\delta \dot y)dx} \end{align} \\

我們假定

\delta y,\ \delta \dot y

邊界

處的值為

0

,即

\delta y|_{x_0,x_1}=\delta \dot y|_{x_0,x_1}=0

對於上式右側的第二個積分:

\begin{align}  \int_{x_0}^{x_1}{\frac{\partial F}{\partial \dot y}\delta \dot ydx}=& \int_{x_0}^{x_1}{\frac{\partial F}{\partial \dot y}d\delta y}\\\\=& \left.\delta y\frac{\partial F}{\partial \dot y}\right|_{x_0}^{x_1}- \int_{x_0}^{x_1}{\delta y}\frac{d}{dx}\frac{\partial F}{\partial \dot y}dx\\\\=& - \int_{x_0}^{x_1}{\delta y}\frac{d}{dx}\frac{\partial F}{\partial \dot y}dx  \end{align}\\

代入原方程:

\begin{align} \delta J= \int_{x_0}^{x_1}{(\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial \dot y})\delta ydx}=0 \end{align} \\

由於

\delta y

任意性

,我得到:若泛函

J[y(x)]

要取得極值,則下式必須成立

\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial \dot y}=0\\

即所謂的

尤拉方程

多個一元函式的泛函變分

泛函:

J[y(x)]=\int_{x_0}^{x_1}{F(x;y,\dot y;z,\dot z)dx}\\

邊界條件:

y(x_0)=y_0,\ y(x_1)=y_1\\

對應的尤拉方程組:

\left\{ \begin{align} \frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial \dot y}=0\\\\ \frac{\partial F}{\partial z}-\frac{d}{dx}\frac{\partial F}{\partial \dot z}=0 \end{align} \right.\\

Proof.

考慮

F(x;y,\dot y;z,\dot z)

的變分:

\delta F(x;y,\dot y;z,\dot z)= F_y\delta y+F_{\dot y}\delta \dot y+F_z\delta z+F_{\dot z}\delta \dot z \\

所以

J[y(x)]

的變分為:

\begin{align} \delta J=&\int_{x_0}^{x_1}{\frac{\partial F}{\partial y}\delta y+\frac{\partial F}{\partial \dot y}\delta \dot y+\frac{\partial F}{\partial z}\delta z+\frac{\partial F}{\partial \dot z}\delta \dot z)dx}\\\\=& \int_{x_0}^{x_1}{(\frac{\partial F}{\partial y}\delta y+\frac{\partial F}{\partial \dot y}\delta \dot y)dx}+ \int_{x_0}^{x_1}{(\frac{\partial F}{\partial z}\delta z+\frac{\partial F}{\partial \dot z}\delta \dot z)dx}\\\\=& \int_{x_0}^{x_1}{(\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial \dot y})\delta ydx}+ \int_{x_0}^{x_1}{(\frac{\partial F}{\partial z}-\frac{d}{dx}\frac{\partial F}{\partial \dot z})\delta zdx} \end{align}\\

因此

\delta J=0

對應的解為

\color{orange}{\left\{ \begin{align} \frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial \dot y}=0\\\\ \frac{\partial F}{\partial z}-\frac{d}{dx}\frac{\partial F}{\partial \dot z}=0 \end{align} \right.}\\

EndProof.

擴充套件形式

泛函:

J[y(x)]=\int_{x_0}^{x_1}{F(x;y_1,\dot y_1;y_2,\dot y_2;\cdots;y_n,\dot y_n)dx}\\

邊界條件:

y(x_i)=y_i,\ \ i=1,2,3,\cdots.n\\

對應的尤拉方程組:

\frac{\partial F}{\partial y_i}-\frac{d}{dx}\frac{\partial F}{\partial \dot y_i}=0,\ \ i=1,2,3,\cdots,n\\

高階導數的泛函變分

泛函:

J[y(x)]=\int_{x_0}^{x_1}{F(x;y,\dot y,\ddot y)dx}\\

邊界條件:

y(x_0)=y_0,\ y(x_1)=y_1\\

對應的尤拉方程:

\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial \dot y}+\frac{d^2}{dx^2}\frac{\partial F}{\partial \ddot y}=0\\

上式也稱為

尤拉-泊松方程

Proof.

考慮

J[y(x)]

的變分:

\begin{align} \delta J=&\int_{x_0}^{x_1}{( \color{purple}{\frac{\partial F}{\partial y}\delta y}+ \color{orange}{\frac{\partial F}{\partial \dot y}\delta \dot y}+ \color{blue}{\frac{\partial F}{\partial \ddot y}\delta \ddot y} )dx} \end{align}\\

橙色部分:

\begin{align} \delta J=&\int_{x_0}^{x_1}{ \color{orange}{\frac{\partial F}{\partial \dot y}\delta \dot y}dx}\\\\=& \color{green}{\left.\delta y\frac{\partial F}{\partial \dot y}\right|_{x_0}^{x_1}}- \int_{x_0}^{x_1}{ \delta y\frac{d}{dx}\frac{\partial F}{\partial \dot y}dx}\\\\=& -\int_{x_0}^{x_1}{ \delta y\color{orange}{\frac{d}{dx}\frac{\partial F}{\partial \dot y}}dx} \end{align}\\

藍色部分:

\begin{align} \delta J=&\int_{x_0}^{x_1}{ \color{blue}{\frac{\partial F}{\partial \ddot y}\delta \ddot y}dx}\\\\=& \color{green}{\left.\delta \dot y\frac{\partial F}{\partial \ddot y}\right|_{x_0}^{x_1}}- \int_{x_0}^{x_1}{ \delta \dot y\frac{d}{dx}\frac{\partial F}{\partial \ddot y}dx}\\\\=& \color{green}{-\left.\delta \dot y\frac{d}{dx}\frac{\partial F}{\partial \ddot y}\right|_{x_0}^{x_1}} + \int_{x_0}^{x_1}{ \delta y\frac{d^2}{dx^2}\frac{\partial F}{\partial \ddot y}dx}\\\\=& \int_{x_0}^{x_1}{ \delta y\color{blue}{\frac{d^2}{dx^2}\frac{\partial F}{\partial \ddot y}}dx} \end{align}\\

代入原方程:

\begin{align} \delta J=&\int_{x_0}^{x_1}{( \color{purple}{\frac{\partial F}{\partial y}}- \color{orange}{\frac{d}{dx}\frac{\partial F}{\partial \dot y}}+ \color{blue}{\frac{d^2}{dx^2}\frac{\partial F}{\partial \ddot y}} )\delta ydx} \end{align}\\

\delta J=0

\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial \dot y}+\frac{d^2}{dx^2}\frac{\partial F}{\partial \ddot y}=0\\

EndProof.

擴充套件形式

泛函:

J[y(x)]=\int_{x_0}^{x_1}{F(x;y,\dot y,\ddot y,\cdots,y^{(n)})dx}\\

邊界條件:

y(x_i)=y_i,\ \ i=1,2,3,\cdots.n\\

對應的尤拉方程:

\sum_{k=0}^{n}{ (-1)^k\frac{d^k}{dx^k}\frac{\partial F}{\partial y^{(k)}} } =0\\

多元函式的泛函變分

泛函:

J[u(x,y)]=\iint_{D}{F(x,y;u,u_x,u_y)dxdy}\\

邊界條件:

u(x,y)|_L=u_0 \\

對應的尤拉方程:

\frac{\partial F}{\partial u}-\frac{\partial }{\partial x}\frac{\partial F}{\partial u_x}-\frac{\partial }{\partial y}\frac{\partial F}{\partial u_y}=0\\

上式也稱為

奧氏方程

其中

\textstyle u_x=\frac{\partial u}{\partial x},\ u_y=\frac{\partial u}{\partial y}

Proof.

因為

變分符號

偏導數符號

互相交換

,所以

\frac{\partial}{\partial x}\delta u=\delta\frac{\partial u}{\partial x}=\delta u_x \\

因此有

\frac{\partial }{\partial x}\left( \frac{\partial F}{\partial u_x}\delta u \right)= \frac{\partial }{\partial x}\left(\frac{\partial F}{\partial u_x}\right)\delta u+ \frac{\partial F}{\partial u_x}\delta u_x\\

\frac{\partial F}{\partial u_x}\delta u_x= \frac{\partial }{\partial x}\left( \frac{\partial F}{\partial u_x}\delta u \right)- \frac{\partial }{\partial x}\left(\frac{\partial F}{\partial u_x}\right)\delta u\\

同理我們可以得到

\frac{\partial F}{\partial u_y}\delta u_y= \frac{\partial }{\partial y}\left( \frac{\partial F}{\partial u_y}\delta u \right)- \frac{\partial }{\partial y}\left(\frac{\partial F}{\partial u_y}\right)\delta u\\

現在考慮

J[y(x)]

的變分:

\begin{align} \delta J =& \iint_{D}{\delta F(x,y;u,u_x,u_y)dxdy}\\\\=& \iint_{D}{( \frac{\partial F}{\partial u}\delta u+ \frac{\partial F}{\partial u_x}\delta u_x+ \frac{\partial F}{\partial u_y}\delta u_y )dxdy}\\\\=& \iint_{D}{\left[ \frac{\partial F}{\partial u}- \frac{\partial }{\partial x}\left(\frac{\partial F}{\partial u_x}\right)- \frac{\partial }{\partial y}\left(\frac{\partial F}{\partial u_y}\right) \right]\delta udxdy}\\\\+& \color{green}{ \iint_{D}{\left[ \frac{\partial }{\partial x}\left( \frac{\partial F}{\partial u_x} \delta u\right)+ \frac{\partial }{\partial y}\left( \frac{\partial F}{\partial u_y} \delta u\right) \right]dxdy}} \end{align}\\

綠色部分

應用

格林公式

\color{green}{ \iint_{D}{\left[ \frac{\partial }{\partial x}\left( \frac{\partial F}{\partial u_x} \delta u\right)+ \frac{\partial }{\partial y}\left( \frac{\partial F}{\partial u_y} \delta u\right) \right]dxdy}= \oint_{L}{ \frac{\partial F}{\partial u_y} \delta udy- \frac{\partial F}{\partial u_x} \delta udx }}\\

因為

\delta u

在區域

D

邊界曲線

L

的取值為

0

\textstyle(\delta u|_L=0)

,因此

綠色部分

的積分為

0

所以我們可以得到

\begin{align} \delta J =& \iint_{D}{\left[ \frac{\partial F}{\partial u}- \frac{\partial }{\partial x}\left(\frac{\partial F}{\partial u_x}\right)- \frac{\partial }{\partial y}\left(\frac{\partial F}{\partial u_y}\right) \right]\delta udxdy} \end{align}\\

\delta J=0

\frac{\partial F}{\partial u}-\frac{\partial }{\partial x}\frac{\partial F}{\partial u_x}-\frac{\partial }{\partial y}\frac{\partial F}{\partial u_y}=0\\

EndProof.

變分法(3)——不同型別的泛函變分

標簽: 函式  尤拉  邊界條件  方程  變分