您當前的位置:首頁 > 動漫

三重積分-交換積分次序

作者:由 不思量自難忘 發表于 動漫時間:2020-08-02

三重積分化為累次積分後,一些先積的被積函式過於複雜,因此嘗試將複雜函式後積,簡化計算。

思路:累次積分化為二次積分再化為累次積分,在這個過程中改變積分次序。

方法:也是有先一後二法和先二後一法,不過與之前的方法不同。

例1:

I=\int^1_0dx\int^x_0dy\int^{xy}_0f(x,y,z)dz

先一後二法:

z\rightarrow y\rightarrow x\Rightarrow z\rightarrow x \rightarrow y

=\iint_{D_{xy}}dxdy\int^{xy}_0f(x,y,z)dz,D_{xy}=\{(x,y)|0\leq x \leq1,0\leq y\leq x\}

=\{(x,y)|0\leq y\leq1,y\leq x\leq1\}

因此,原積分

=\int^{1}_{0}dy\int^{1}_{y}dx\int^{xy}_{0}f(x,y,z)dz

先二後一法:

z\rightarrow x\rightarrow y\Rightarrow x\rightarrow z \rightarrow y

=\int^1_0dy\iint_{D_{y}}f(x,y,z)dz,D_y=\{(x,z)|y\leq x\leq1,0\leq z\leq xy\}=\{(x,z)|0\leq z\leq y,\max\{y,\frac zy\}\leq x \leq 1\}

具體操作見

中的代數法。

=\int^1_0dy\int^{y^2}_0dz\int^1_yf(x,y,z)dx+\int^1_0dy\int^{y}_{y^2}dz\int^1_{\frac zy}f(x,y,z)dx

先一後二法:

x\rightarrow z \rightarrow y\Rightarrow x\rightarrow y\rightarrow z

=\iint_{D_{yz1}}dydz\int^1_yf(x,y,z)dx+\iint_{D_{yz2}}dydz\int^1_{\frac zy}f(x,y,z)dx,D_{yz1}=\{(y,z)|0\leq y\leq 1,0\leq z\leq y^2\}

=\{(y,z)|0\leq z\leq1,\sqrt z\leq y\leq1\},D_{yz2}=\{(y,z)|0\leq y\leq1,y^2\leq z\leq y\}

=\{(y,z)|0\leq z\leq 1,z\leq y\leq \sqrt z\}

=\int^1_0dz\int^1_{\sqrt z}dy\int^1_yf(x,y,z)dx+\int^1_0dz\int^{\sqrt z}_zdy\int^1_{\frac zy}f(x,y,z)dx

先二後一法:

x\rightarrow y\rightarrow z \Rightarrow y\rightarrow x\rightarrow z

=\int^1_0dz\iint_{D_z1}f(x,y,z)dxdy+\int^1_0dz\iint_{D_z2}f(x,y,z)dxdy,D_z1=\{(x,y)|\sqrt z\leq y\leq 1,y\leq x\leq1\}

=\{(x,y)|\sqrt z\leq x\leq1,\sqrt z\leq y\leq x\},D_z2=\{(x,y)|z\leq y\leq\sqrt z,\frac zy\leq x\leq1\}

=\{(x,y)|\frac zy\leq x\leq1,\sqrt z\leq y\leq1\}

=\int^1_0dz\int^1_{\sqrt z}dx\int^x_{\sqrt z}f(x,y,z)dy+\int^1_0dz\int^{1}_{\frac zy}dx\int^1_{\sqrt z}f(x,y,z)dy

例2:

\int^1_0dz\int^z_0dy\int^y_0\cos(x-1)^3dx

先一後二法:

=\iint_{D_{yz}}dydz\int^y_0\cos(x-1)^3dx,D_{yz}=\{(y,z)|0\leq z\leq1,0\leq y\leq z\}

=\{(y,z)|0\leq y\leq1,y\leq z\leq1\}

\int^1_0dy\int^1_ydz\int^y_0\cos(x-1)^3dx

先二後一法:

=\int^1_0dy\iint_{D_y}\cos(x-1)^3dxdz,D_y=\{(x,z)|y\leq z\leq1,0\leq x\leq y\}

=\int^1_0dy\int^y_0dx\int^1_y\cos(x-1)^3dz

先一後二法:

=\iint_{D_{xy}}dxdy\int^1_y\cos(x-1)^3dz,D_{xy}=\{(x,y)|0\leq y\leq1,0\leq x\leq y\}

=\{(x.y)|0\leq x\leq1,x\leq y\leq1\}

=\int^1_0dx\int^1_xdy\int^1_y\cos(x-1)^3dz=\int^1_0\frac{(1-x)^2}2\cos(x-1)^3dx

=\int^1_0\frac{\cos(x-1)^3}6d(x-1)^3=\frac{\sin^31}6

例3:

\int^1_0dx\int^1_xdy\int^1_yye^{z^4}dz

先二後一法:

\int^1_0dx\iint_{D_x}ye^{z^4}dydz,D_x=\{(y,z)|x\leq y\leq 1,y\leq z\leq1\}

=\{(y,z)|x\leq z\leq1,x\leq y\leq z\}

=\int^1_0dx\int^1_xdz\int^z_xye^{z^4}dy

先一後二法:

=\iint_{D_{xz}}dxdz\int^{z}_{x}ye^{z^4}dy,D_{xz}=\{(x,z)|0\leq x\leq 1,x\leq z\leq 1\}

=\{(x,z)|0\leq z\leq1,0\leq x\leq z\}

=\int^1_0dz\int^z_0dx\int^z_xye^{z^4}dy=\int^1_0dz\int^z_0(\frac{z^2}2e^{z^4}-\frac{x^2}2e^{z^4})dx

=\int^1_0\frac{z^3}3e^{z^4}dz=\int^1_0\frac{e^{z^4}}{12}d(z^4)=\frac{e-1}{12}